How Do You Find The Integral T Sint Dt ? Integral Of Tsint

I need to find the derivative of this function. I know I need to separate the integrals into two and use the chain rule but I am stuck.

Đang xem: Integral t sint dt

$$y=int_sqrt{x}^{x^3}sqrt{t}sin t~dt~.$$

Thanks in advance

*

*

Let me show you a general method which works in these sorts of situations.

By the Fundamental Theorem of Calculus, we know how to take the derivative of$$F(z):=int_0^zsqrt{t}sin(t),dt;$$in particular, FTC tells us that $$ ag{1}F”(z)=sqrt{z}sin(z).$$Now, note that$$int_{sqrt{x}}^{x^3}sqrt{t}sin(t),dt=int_0^{x^3}sqrt{t}sin(t),dt-int_0^{sqrt{x}}sqrt{t}sin(t),dt=F(x^3)-F(sqrt{x}).$$So, the derivative you want is$$frac{d}{dx}left.$$See if you can use the Chain Rule, and (1), to finish it up from here.

Xem thêm: Derivatives Of

Hint

By the chain rule we prove easly:

If $$F(x)=int_{u(x)}^{v(x)}f(t)dt$$then$$F”(x)=f(v(x))v”(x)-f(u(x))u”(x)$$

Thanks for contributing an answer to wnyrails.orgematics Stack Exchange!

Please be sure to answer the question. Provide details and share your research!

But avoid

Asking for help, clarification, or responding to other answers.Making statements based on opinion; back them up with references or personal experience.

Use wnyrails.orgJax to format equations. wnyrails.orgJax reference.

Xem thêm: Enduring Word Bible Commentary Proverbs 9 Commentary Proverbs 9

To learn more, see our tips on writing great answers.

Post Your Answer Discard

By clicking “Post Your Answer”, you agree to our terms of service, privacy policy and cookie policy

Not the answer you're looking for? Browse other questions tagged integration derivatives definite-integrals or ask your own question.

*

site design / logo © 2021 Stack Exchange Inc; user contributions licensed under cc by-sa. rev2021.8.2.39897

See also  Alternate Notation For Vector Line Integral Notation For Vector Line Integrals

wnyrails.orgematics Stack Exchange works best with JavaScript enabled

*

Your privacy

By clicking “Accept all cookies”, you agree Stack Exchange can store cookies on your device and disclose information in accordance with our Cookie Policy.

See more articles in category: Integral

Leave a Reply

Back to top button